
BAILSEC.IO

OFFICE@BAILSEC.IO

X: @BAILSECURITY

TG: @HELLOATBAILSEC

FINAL REPORT

Stader Labs
MaticX

September 2024

bailsec.io 1

Disclaimer:

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in the
target system or codebase.

The content of this assessment is not an investment. The information provided in this report is
for general informational purposes only and is not intended as investment, legal, financial,
regulatory, or tax advice. The report is based on a limited review of the materials and
documentation provided at the time of the audit, and the audit results may not be complete or
identify all possible vulnerabilities or issues. The audit is provided on an "as-is," "where-is," and
"as-available" basis, and the use of blockchain technology is subject to unknown risks and flaws.

The audit does not constitute an endorsement of any particular project or team, and we make
no warranties, expressed or implied, regarding the accuracy, reliability, completeness, or
availability of the report, its content, or any associated services or products. We disclaim all
warranties, including the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement.

We assume no responsibility for any product or service advertised or offered by a third party
through the report, any open-source or third-party software, code, libraries, materials, or
information linked to, called by, referenced by, or accessible through the report, its content, and
the related services and products. We will not be liable for any loss or damages incurred as a
result of the use or reliance on the audit report or the smart contract.

The contract owner is responsible for making their own decisions based on the audit report and
should seek additional professional advice if needed. The audit firm or individual assumes no
liability for any loss or damages incurred as a result of the use or reliance on the audit report or
the smart contract. The contract owner agrees to indemnify and hold harmless the audit firm or
individual from any and all claims, damages, expenses, or liabilities arising from the use or
reliance on the audit report or the smart contract.

By engaging in a smart contract audit, the contract owner acknowledges and agrees to the
terms of this disclaimer.

bailsec.io 2

1. Project Details

Important:
Please ensure that the deployed contract matches the source-code of the last commit hash.

Project

 Stader - MaticX

Website staderlabs.com

Language Solidity

Methods Manual Analysis

Github repository https://github.com/stader-
labs/maticX/tree/6889ca1b630e294131660c83816078d74465a
7a0/contracts

Resolution 1 https://github.com/stader-
labs/maticX/tree/3f234e8cfb3c2f688b4b2346024a8a7eeb413b
14/contracts

https://github.com/stader-labs/maticX/tree/6889ca1b630e294131660c83816078d74465a7a0/contracts
https://github.com/stader-labs/maticX/tree/6889ca1b630e294131660c83816078d74465a7a0/contracts
https://github.com/stader-labs/maticX/tree/6889ca1b630e294131660c83816078d74465a7a0/contracts
https://github.com/stader-labs/maticX/tree/3f234e8cfb3c2f688b4b2346024a8a7eeb413b14/contracts
https://github.com/stader-labs/maticX/tree/3f234e8cfb3c2f688b4b2346024a8a7eeb413b14/contracts
https://github.com/stader-labs/maticX/tree/3f234e8cfb3c2f688b4b2346024a8a7eeb413b14/contracts

bailsec.io 3

2. Detection Overview

Severity

Found

Resolved

Partially
Resolved

Acknowledged
(no change made)

High 2 2

Medium 5 3 2

Low 5 2 3

Informational 9 4 5

Governance 2 2

Total 23 11 12

2.1 Detection Definitions

Severity

Description

High The problem poses a significant threat to the confidentiality of a
considerable number of users' sensitive data. It also has the
potential to cause severe damage to the client's reputation or result
in substantial financial losses for both the client and the affected
users.

Medium While medium level vulnerabilities may not be easy to exploit, they
can still have a major impact on the execution of a smart contract.
For instance, they may allow public access to critical functions,
which could lead to serious consequences.

Low Poses a very low-level risk to the project or users. Nevertheless the
issue should be fixed immediately

Informational Effects are small and do not post an immediate danger to the
project or users

Governance Governance privileges which can directly result in a loss of funds or
other potential undesired behavior

bailsec.io 4

3. Detection

Global

Issue_01 Reminder: Storage Layout correctness

Severity Informational

Description Since both audited contracts are meant to be implementation
contracts for proxies which upgrade previous iterations. It is
mandatory to ensure that the proxy layout is not accidentally crashed
by inheriting new dependencies / contracts.

One can simply use hardhat-storage-layout or forge layout storage
CONTRACT

Recommendations Consider keeping this in mind when upgrading

Comments /
Resolution

Acknowledged

bailsec.io 5

ValidatorRegistry

The ValidatorRegistry contract is a registry contract that maintains a list of validator IDs for the
MaticX Liquid Staking Architecture. It allows administrators (addresses with the
DEFAULT_ADMIN_ROLE) to add and remove validators from the registry, ensuring that only
active validators with a valid share contract are included. The contract keeps track of preferred
validators for deposits and withdrawals, which can be set by accounts with the BOT role to
determine delegations.

Before adding a validator, the contract verifies that the validator exists in the StakeManager and
is active. When removing a validator, it ensures that the validator is not set as a preferred
validator and that it has no remaining stake associated with the MaticX contract. The registry
provides functions to retrieve the list of validators and specific validator IDs, facilitating
interaction with other contracts in the staking ecosystem.

Additionally, the contract incorporates access control mechanisms using OpenZeppelin's
AccessControlUpgradeable, allowing role-based permissions. It also includes pausability
through PausableUpgradeable, enabling the contract to be paused and unpaused by
administrators for maintenance or emergency situations which prevents adding/removing and
setting preferred validators.

Privileged Functions

- grantRole (onlyRole)
- revokeRole (onlyRole)
- initializeV2
- addValidator
- removeValidator
- setPreferredDepositValidatorId
- setPreferredWithdrawalValidatorId
- setMaticX
- setVersion
- togglePause

bailsec.io 6

Issue_02
DoS of removeValidator by dusting a small amount of ValidatorShare tokens
to the MaticX contract

Severity Medium

Description The removeValidator function allows for removing any validator which
has a zero-balance and is not a preferred validator:

 require(

 preferredDepositValidatorId != _validatorId,
 "Can't remove a preferred validator for deposits"

);

 require(
 preferredWithdrawalValidatorId != _validatorId,

 "Can't remove a preferred validator for withdrawals"
);

 address validatorShare = stakeManager.getValidatorContract(
 _validatorId

);

 (uint256 validatorBalance,) = IValidatorShare(validatorShare)
 .getTotalStake(maticX);

 require(validatorBalance == 0, "Validator has some shares left");

A malicious user can simply purchase a small amount of the
ValidatorShare token, transfer them to MaticX which then results in a
revert of the following check:

require(validatorBalance == 0, "Validator has some shares left");

and essentially prevents the removal from validators.

Recommendations Consider implementing a _ignoreBalance boolean which optionally
allows to bypass this check in such scenarios.

Optionally, it is also possible to execute a migration followed by a
removeValidator call (in the same transaction) to remove any dusted

bailsec.io 7

validators or execute a temporary change of the MaticX address
(which can also be dusted if not removed within the same transaction).

Comments /
Resolution

Resolved.

Issue_03
DoS of removeValidator by delegating outstanding rewards to the “to
be removed” _validatorId (if BOT within MaticX is not trusted)

Severity Low

Description In a similar mechanism as the “DoS of removeValidator by dusting a
small amount of ValidatorShare tokens to the MaticX contract” issue, it
is possible to dust validators by invoking the
stakeRewardsAndDistributeFees function and buy shares from
different validators, since this function lacks a check for the preferred
depositor.

This is however only possible if any address with the BOT role (within
MaticX; not to confuse with the BOT role within the
ValidatorRegistry) is not trusted.

Recommendations Consider implementing a _ignoreBalance boolean which optionally
allows to bypass this check in such scenarios.

Comments /
Resolution

Resolved.

bailsec.io 8

MaticX

This section of the report only displays issues which are related to an existing deployment.
Issues which are related to new deployments will be handled in the section below.

The MaticX contract is the Liquid Staking solution which was developed by Stader for the
Polygon Staking Architecture. Users can deposit POL or MATIC tokens in exchange for MaticX
tokens, following the rule of three based on the overall staked POL token amount of MaticX and
the circulating MaticX supply:

> POLAmount * MaticXSupply / stakedPOL

> MaticXAmount * stakedPol / MaticXSupply

The MaticX contract basically serves as a delegator which stakes these tokens through different
validators based on the preferred setting within the ValidatorRegistry contract. These stakes will
then earn a share of the validator rewards which can be either claimed via the
withdrawRewards / withdrawValidatorsReward functions or automatically whenever a new
deposit or withdrawal request is happening.

Once rewards have been claimed they will be staked in the same manner as the normal token
deposit flow by invoking the buyVoucherPOL function which increases the underlying staked
POL amount without minting any MaticX tokens and therefore it increases the value of MaticX
by increasing the exchange rate.

A treasury fee which is by default 5% is taken on these rewards whenever the
stakeRewardsAndDistributeFees function is invoked. This treasury fee is the revenue stream for
Stader.

Users can redeem their MaticX tokens by invoking the requestWithdraw function which burns
MaticX and creates an unbond request on the ValidatorShare contract which can be claimed
after the WITHDRAWAL_DELAY has been passed, by invoking claimWithdrawal.

bailsec.io 9

Appendix: StakeManager

The StakeManager contract is a core component of Polygon's staking architecture. It manages
the registration and lifecycle of validators, allowing them to stake tokens, participate in
consensus, and earn rewards.

Delegators can also stake their tokens through validators to earn a share of the rewards. The
contract handles staking, unstaking, delegation, reward distribution, validator auctions, and
updates to the validator set.

The part of interest for our auditing process is only the staking through delegation
mechanism, where delegators stake tokens through validators. This is facilitated via the
updateValidatorState function to increase or decrease the overall delegated amount towards a
validator.

Delegator rewards are then distributed based on this amount and the corresponding owned
ValidatorShare tokens, which is handled within withdrawDelegatorsReward and
delegatorsReward.

Topping-up delegator rewards is handled within _increaseValidatorRewardWithDelegation
which is connected to the checkSignatures function. Furthermore, the contract is epoch-based,
starting by epoch 1 and the epoch is incremented whenever checkSignatures is invoked.

This contract is not included in the audit scope.

Appendix: ValidatorShare

The ValidatorShare contract is the first instance where the MaticX contract is interacting with
and is tied to a specific validator. When depositing POL/MATIC tokens into the Polygon staking
architecture, the ValidatorShare ERC20 token is received which serves as staking receipt and
can later be redeemed for POL/MATIC tokens. In the current iteration, the ValidatorShare token
does not accrue any value, it has a steady exchangeRate and withdrawRate of 100 or 1e29.
Rewards can be directly claimed by the token owner and the token is freely transferable via the
standard transfer function (but not via transferFrom). Furthermore, slashing is currently disabled.

bailsec.io 10

MATIC and POL tokens are worth exactly the same and can be considered as (technically) the
same token. The contract exposes binary call-paths to honor the interaction for both tokens
which is primarily for backwards compatibility.

To facilitate deposits the ValidatorShare contract exposes the buyVoucher and buyVoucherPol
functions.

To facilitate withdrawal requests, the ValidatorShare contract exposes the sellVoucher_newPOL
function

To facilitate request claims, the ValidatorShare contract exposes the
unstakeClaimTokens_newPOL function

To facilitate reward claiming, the ValidatorShare contract exposes the withdrawRewardsPol
functions.

Furthermore this contract exposes several other functions but the above mentioned functions
are the only ones used by the MaticX contract.

This contract is not included in the audit scope.

Appendix: Deposit Flow

Users can deposit POL/MATIC tokens via the submit function which then mints the
corresponding amount of MaticX to the user and delegates the stake to a validator. During
delegation, the corresponding amount of ValidatorShare tokens is minted to the MaticX
contract.

bailsec.io 11

The flow is as follows:

Appendix: Request Flow

Users can redeem MaticX tokens via the requestWithdraw function which then burns the
provided amount of MaticX tokens and creates a withdrawal request on the ValidatorShare
contract which is claimable by the user once the delay has surpassed. Since there can be a
scenario where the balance of the preferred validator is insufficient to honor the withdrawal
amount, a loop is executed which considers subsequent validators to honor the accurate
withdrawal amount. This can therefore result in more than one withdrawal request being
created. The validatorNonce within the WithdrawalRequest is corresponding to the
unbondNonce within the ValidatorShare contract, ensuring that only the initial requester can
claim the finalized withdrawal request.

bailsec.io 12

The flow is as follows:

Appendix: Claim Flow

Once a request has been successfully created, the request creator can claim this request
whenever the requestEpoch has surpassed by calling claimWithdrawal. This will then trigger the
unstakeClaimTokens_newPOL function in the corresponding ValidatorShare contract which
transfers the requested funds to the MaticX contract and then towards the caller.

bailsec.io 13

The flow is as follows:

Appendix: Binary POL/MATIC solution

The MaticX as well as the ValidatorShare contract allow for depositing MATIC as well as POL.
Both tokens are handled exactly the same with the only difference that MATIC tokens will be
migrated to POL tokens using a 1:1 ratio, whenever MATIC is staked. The call-paths are similar
and binary.

Appendix: Migrate Delegation

The MaticX contract allows for migrating delegated stakes from one validator to another
validator. This is trivially done by calling the migrateDelegation function which then invokes the
migrateDelegation function on the StakeManager. Funds are just migrated via simple share
burns and mints.

bailsec.io 14

Appendix: Reward Mechanism

The contract accrues rewards based on the delegated stake on each validator. The reward
calculation is handled within each ValidatorShare contract but follows a simple masterchef-like
pattern where rewards are distributed based on the overall supply distribution of ValidatorShare
tokens.

Rewards can be simply claimed by anyone via invoking withdrawRewards (for one validator) or
withdrawValidatorsReward, which then claims rewards from the corresponding validator(s) via
the withdrawRewardsPOL function and transfers these to the MaticX contract (this also
automatically happens upon each sellVoucher / buyVoucher call and during the transfer of any
ValidatorShare tokens).

Once rewards have been received, anyone with the BOT role can invoke the
stakeRewardsAndDistributeFees function which takes a small fee to the treasury and delegates
the leftover amount to the desired validator. The deposit will increase the exchange rate.

The flow for claiming rewards is as follows:

bailsec.io 15

The flow for staking rewards is as follows:

Appendix: Core Invariants

The core invariants of the protocol are the following:

1) Deposits should always increase the totalMaticXSupply by

> depositAmount * totalMaticXSupply / stakedPol

2) Deposits should never influence the MaticX exchange rate

3) Withdrawals should always decrease stakedPol by

> maticXRedeemed * stakedPol / totalMaticXSupply

4) Withdrawals should never influence the MaticX exchange rate

5) The exchange rate should always be up to date before any deposit/withdraw request

6) Request claims should always transfer out the exact same amount as requested

bailsec.io 16

7) Requests should always match with the corresponding unbondNonce within the
ValidatorShare contract

8) Reward compounds should always positively influence the MaticX exchange rate by
increasing the underlying staked POL amount

9) Withdrawal requests should be claimable once the delay has been surpassed

10) Withdrawal requests can only be claimed once

Privileged Functions

- grantRole
- revokeRole
- initializeV2
- migrateDelegation
- setFeePercent
- setTreasury
- setValidatorRegistry
- setFxStateRootTunnel
- setVersion
- togglePause

bailsec.io 17

Issue_04 Governance Privilege: Contract owner has control over funds

Severity Governance

Description Currently, governance of this contract has several privileges for
invoking certain functions that can drastically alter the contracts
behavior. This includes several functionalities such as pausing,
changing the registry and more.

Furthermore, this contract is used as proxy implementation which
grants the proxy admin full control over all user funds

Recommendations Consider incorporating a Gnosis Multisignature contract as owner and
ensuring that the Gnosis participants are trusted entities.

Comments /
Resolution

Acknowledged.

bailsec.io 18

Issue_05
Governance of ValidatorShare and StakeManager contracts has
several privileges that can negatively impact MaticX

Severity Governance

Description The Polygon staking architecture has several privileges which grant
governance full control over all funds within the contract. Some
functionalities can prevent buy/sell whereas some functionalities can
result in a loss of funds. We have aggregated these functions:

For ValidatorShare:

a) migrateOut
b) migrateIn
c) updateDelegation

For StakeManager:

a) setDelegationEnabled
b) setStakingToken
c) unstake/unstakePOL
d) drain

There are possibly also several other potential contract states where
shares cannot be bought/sold. Overall it must be clear that in the
worst case scenario, all funds can be lost.

Recommendations We do not recommend a change. We assume that the Polygon team
is highly trusted.

Comments /
Resolution

Acknowledged.

bailsec.io 19

Issue_06
Sophisticated exploit allows users to permanently lock all rewards into
the MaticX contract

Severity High

Description The ValidatorShare contract exposes a transfer function which
automatically “claims” rewards from the “from” and “to” address.
Optionally this can be done by claiming POL or MATIC:

 function transfer(address to, uint256 value) public returns (bool) {

 _transfer(to, value, false);

 return true;
 }

 function _transfer(address to, uint256 value, bool pol) internal {

 address from = msg.sender;

 // get rewards for recipient
 _withdrawAndTransferReward(to, pol);

 // convert rewards to shares

 _withdrawAndTransferReward(from, pol);
 // move shares to recipient

 super._transfer(from, to, value);
 _getOrCacheEventsHub().logSharesTransfer(validatorId, from, to,

value);

 }

A malicious user can first buy a small amount of ValidatorShare tokens
and then transfer these ValidatorShare tokens to the MaticX contract
via the transfer function, which will then claim all MATIC tokens instead
of POL tokens.
These tokens will be locked because there is no way to withdraw
/allocate them as reward tokens, as the
stakeRewardsAndDistributeFees function only handles POL tokens and
no MATIC tokens.

PoC:

bailsec.io 20

1. The MaticX contract accrues some rewards on the validators
over time.

2. An attacker realizes that and decides to stake a dust amount of
funds directly into the validators that have pending rewards to
distribute.

3. The attacker then transfers the shares directly to the MaticX
contract.

• The function ValidatorShare::transfer automatically
claims rewards in MATIC for the sender and receiver
of the tokens.

• Therefore, the MaticX contract will receive the
accrued rewards in MATIC tokens

4. Because stakeRewardsAndDistributeFees only stakes POL and
not MATIC, the rewards in MATIC will be stuck in the contract.

Recommendations Consider adjusting the stakeRewardsAndDistributeFees function to be
compatible with MATIC tokens as well.

Comments /
Resolution

Resolved, a function has been implemented which allows for
compounding MATIC tokens.

bailsec.io 21

Issue_07 Initial MATIC balance will be stuck in the contract after upgrade

Severity High

Description The current on-chain implementation has an idle amount of MATIC
tokens, at the time of writing it is the following amount:

If the proxy is now upgraded without these rewards being
compounded beforehand, they will be stuck in the contract because
the new implementation is incompatible with MATIC tokens.

Recommendations Consider adjusting the stakeRewardsAndDistributeFees function to be
compatible with MATIC tokens as well and consider compounding
these idle rewards before the upgrade.

Comments /
Resolution

Resolved.

bailsec.io 22

Issue_08
Malicious user can DoS withdrawals by dusting the MaticX contract
with small amounts of ValidatorShare tokens from different validators

Severity Medium

Description The requestWithdrawal function loops over all existing validators until
either leftAmountToWithdraw = 0 or until all validators have been
considered.

In theory, this exposes an issue where the loop runs OOG at some
point. Due to the fact that the architecture exposes a preferred
depositor, this attack cannot be executed as one cannot deposit 1 wei
to different validators to trigger a scenario where one validator has an
insufficient balance to cover a withdrawal while it then loops over x
amount of validators which have all a balance of 1 wei.

However, we still found a way to execute this exploit. That being said,
there are a two prerequisites that are needed:

a) The architecture must expose a large amount of different existing
validators
b) A withdrawal attempt must result in one validator being depleted
which triggers the loop continuation to other validators

Prerequisite a) is currently NOT GIVEN based on the on-chain
implementation. This means this issue can only happen once more
validators are being added.

Once these prerequisites are given, a user can trivially buy shares from
different validators, transfer them to the MaticX contract which will
then result in amountToWithdrawFromValidator > 0 and attempts to
loop over all validators which will potentially run OOG.

PoC:

1. The registry contains a ton of validators, and most of them are
not currently used by the MaticX contract.

bailsec.io 23

2. An attacker sees that and decides to stake a dust amount of
POL in all empty validators.

3. The attacker directly transfers all those validators' shares to the
MaticX contract.

4. A regular user tries to make a big withdrawal that depletes the
preferred validator for withdrawals, and the function has to loop
over most of the registered validators due to the dust amounts
of shares.

5. Because the function sellVoucher_newPOL is gas-intensive
within each validator, the transaction will possibly run out of gas
trying to withdraw the dust amounts of POL from a ton of
validators.

6. The withdrawal attempt reverts.

Recommendations Consider ensuring that only a reasonable amount of validators exist in
the registry.

Comments /
Resolution

Acknowledged, the client will ensure that the amount of validators
stays reasonable. Furthermore, the BOT role is assumed to be trusted.

bailsec.io 24

Issue_09
Lack of reward compounding before submit allows users to extract
value from the protocol

Severity Medium

Description Whenever users deposit or withdraw tokens, the current exchange rate
via the _convertPOLToMaticX / _convertMaticXToPOL functions is
used to determine how much MaticX will be received for staking POL
tokens or how much POL tokens are received for redeeming MaticX.

This exchange rate is dependent on the circulating MaticX supply and
the total staked POL amount:

 function _convertPOLToMaticX(
 uint256 _balance

) private view returns (uint256, uint256, uint256) {

 uint256 totalShares = totalSupply();
 totalShares = totalShares == 0 ? 1 : totalShares;

 uint256 totalPooledAmount = getTotalStakeAcrossAllValidators();
 if (totalPooledAmount == 0) {

 totalPooledAmount = 1;
 }

 uint256 balanceInMaticX = (_balance * totalShares) /
totalPooledAmount;

 return (balanceInMaticX, totalShares, totalPooledAmount);
 }

 function _convertMaticXToPOL(

 uint256 _balance

) private view returns (uint256, uint256, uint256) {
 uint256 totalShares = totalSupply();

 totalShares = totalShares == 0 ? 1 : totalShares;

bailsec.io 25

 uint256 totalPooledAmount = getTotalStakeAcrossAllValidators();
 if (totalPooledAmount == 0) {

 totalPooledAmount = 1;

 }

 uint256 balanceInPOL = (_balance * (totalPooledAmount)) /

totalShares;

 return (balanceInPOL, totalShares, totalPooledAmount);
 }

An important invariant is that the exchange rate is not manipulated
whenever deposits or withdrawals are happening but it is changed
whenever the stakeRewardsAndDistributeFees function is invoked as
this will increase the total staked POL amount without minting any
MaticX tokens.

Due to the fact that the stakeRewardsAndDistributeFees function is not
called before any deposit, users can trivially extract value from the
protocol by depositing with the old exchange rate, then waiting for the
BOT calling stakeRewardsAndDistributeFees which increases the
exchange rate and requesting a withdrawal again.

In the current implementation, the interval in which the
stakeRewardsAndDistributeFees function is called is not regular
enough which means that one can steal fees which have been
accrued since up to 3 days:

bailsec.io 26

which makes this blunder an easy target for malicious users to
effortlessly extract value from the protocol.

At the time of writing, the following amount of rewards is just sitting
uncompounded in the contract:

This issue can be amplified if purchases are disallowed for certain
periods (check: “Owner of validatorShare contract has several privileges

that can negatively impact MaticX”) because this would mean the
stakeRewardsAndDistributeFees function call will revert for some
unknown period, resulting in even more tokens being accrued before
applied to the exchange rate.

PoC:

1. The contract has 50k POL staked and 50k shares of MaticX,
making the exchange rate 1:1 (1 share = 1 POL).

2. Over a few days, the contract accrues 5k POL in rewards.
3. A malicious user sees this and deposits 50K POL, receiving 50K

new shares.
• Now, the contract has 100K POL staked and 100K

shares.
4. Later, stakeRewardsAndDistributeFees is called by the bot to

stake the rewards, adding the 5K POL to the total.
• The contract now has 105K POL, but still only 100K

shares, making the exchange rate 1.05.
5. The attacker withdraws their 50K shares and receives 52.5K

POL (because of the new exchange rate).

bailsec.io 27

6. The attacker profits 2,500 POL (52,500 withdrawn - 50,000
deposited).

Note: In the PoC, the amounts have been simplified for the sake of
clarity but a sophisticated attacker can set up a bot on-chain to
execute this attack constantly and steal part of the yield meant for
regular users.

Recommendations Recommendations:

Option 1: Consider invoking withdrawRewards (within a special iof-
clause due to the minAmount requirement within ValidatorShare) and
subsequently stakeRewardsAndDistributeFees (with the preferred
deposit validator) to ensure that the exchangeRate is always up to
date.

Option 2: Consider incorporating the ValidatorShare’s native restake
function and trigger it on every deposit/redeem whenever the
minAmount threshold is met.

Option 3: Consider ensuring that the BOT invokes
stakeRewardsAndDistributeFees regularly (every 3 hours as example),
using tools like Chainlink Automation.

We recommend going with Option 3 as this does not further modify
the codebase (which prevents the introduction of undesired side-
effects).

Comments /
Resolution

Acknowledged, the client went with option 3.

bailsec.io 28

Issue_10 feePercent change will be applied in hindsight

Severity Medium

Description The setFeePercent function allows for changing the fee which is taken
upon reward distribution. A change of this fee will be applied in
hindsight on the current existing ERC20 balance in the contract,
changing the expected reward distribution from already accrued
rewards.

Recommendations Consider invoking stakeRewardsAndDistributeFees before any fee
change. (If there any any idle rewards)

Comments /
Resolution

Resolved, the _stakeRewardsAndDistributeFees function is invoked
which will compound POL fees but not MATIC fees.

This is however not a big issue since the contract only accumulates
MATIC fees in edge-cases.

Issue_11
Cached requestEpoch during requestWithdraw will be inaccurate if
WITHDRAWAL_DELAY is changed after a withdrawal has been
requested

Severity Medium

Description A blunder within the requestWithdraw function will potentially disallow
users to rightfully claim their withdrawal on time:

 uint256 requestEpoch = stakeManager.epoch() +

 stakeManager.withdrawalDelay();

The requestEpoch is determined by using the current
withdrawalDelay() at the time of requesting the withdrawal.

This is incorrect due to the fact that the check within the

bailsec.io 29

ValidatorShare contract is as follows:

 require(

 unbond.withdrawEpoch.add(stakeManager.withdrawalDelay()) <=
stakeManager.epoch() && shares > 0,

 "Incomplete withdrawal period"

);

which is using the dynamic withdrawalDelay() value while the
claimWithdrawal function uses requestEpoch which is corresponding
to the withdrawalDelay at the time of the request creation.

If the WITHDRAWAL_DELAY value is now decreased after a request
has been made, users should theoretically be able to claim their
request earlier (as per code within ValidatorShare). However, due to
the blunder within the requestWithdraw function, this is impossible.

Recommendations Consider following the same approach as the ValidatorShare contract
by storing the currentEpoch into the WithdrawalRequest and applying
the dynamic withdrawalDelay() on the check.

Optionally, one can simply remove the epoch check within the MaticX
contract as it would revert anyways within the ValidatorShare contract
if the epoch for the nonce is not reached.

Comments /
Resolution

Resolved.

bailsec.io 30

Issue_12
Rare possibility of DoS’ing withdrawals by allocating dust reward
amounts to many different validators in case of malicious BOT address

Severity Low

Description This issue is similar to the “Malicious user can DoS withdrawals by
dusting the MaticX contract with small amounts of ValidatorShare

tokens from different validators” issue.

However, the root-cause of this issue is the fact that the BOT address
can delegate funds to any validator via the
stakeRewardsAndDistributeFees function (instead of only to the
preferred depositor)

Recommendations Consider strictly ensuring that:

a) No unnecessary large amount of validators is listed within the
ValidatorRegistry contract

b) The BOT address is a (partially) trusted address

Comments /
Resolution

Acknowledged, the client ensured that a) and b) will be enforced.

bailsec.io 31

Issue_13 Integration Issue: Enforcement of POL instead of MATIC

Severity Low

Description Currently, the claimWithdrawal function only transfers out POL and
does not allow for choosing whether POL/MATIC should be used.
This could result in issues for protocols that are building on top of
MaticX as they now essentially need to adjust their logic to handle POL
instead of MATIC.

Recommendations We do not recommend a change. However, it should be
communicated with protocols which are built on top of MaticX.

Comments /
Resolution

Acknowledged.

Issue_14 Lack of reasonable upper limit for setFeePercent

Severity Low

Description The setFeePercent function allows setting the treasury fee of up to
100%.

This amount is unreasonably high, as this means all fees would
completely go towards the protocol and users would not receive any
fee at all.

Recommendations Consider changing this to a reasonable threshold (e.g. 10%)

Comments /
Resolution

Resolved, this has been changed. Furthermore, the feePercent type
was changed from uint8 to uint16. This should be carefully checked
during the upgrade to ensure no collisions occur.

bailsec.io 32

Issue_15
Trigger of temporary DoS of withdrawals due to validator unavailability
by malicious actor

Severity Low

Description Within the “Governance of ValidatorShare and StakeManager contracts
has several privileges that can negatively impact MaticX” issue, we have
explained that under several circumstances it can happen that the
contract does not work as expected due to some changes within the
ValidatorShare or StakeManager contract. One explicit scenario is the
scenario where the deactivationEpoch of a validator is above the
current epoch:

else if (deactivationEpoch > currentEpoch) { // validator just unstaked,
need to wait till next checkpoint

 revert("unstaking");

 }

which is the case (as the comment mentions) whenever a validator has
just unstaked.
In the scenario where there are no delegated stakes towards this
validator, withdrawals will always work.
However if a malicious user recognizes such a transaction by the
validator and frontruns this with a dust purchase and transfer towards
the MaticX contract, it may happen that this validator would then be
part of the requestWithdraw loop which would then revert due to the
above mentioned issue.

Recommendations We do not recommend a change. However, it must be kept in mind
that such a scenario can be intentionally triggered by a malicious user
and other users are forced to wait with their withdrawals.

Comments /
Resolution

Acknowledged.

bailsec.io 33

Issue_16 Reentrancy guard is only initialized during initializeV2

Severity Informational

Description The reentrancy guard is corresponding to values 1 and 2 for ENTERED
and NOT_ENTERED:

uint256 private constant NOT_ENTERED = 1;

uint256 private constant ENTERED = 2;

By default however, the value is zero:

uint256 private reentrancyGuardStatus;

which means that the very first function call will not be guarded with
the reentrancy guard, if initializeV2 is not invoked beforehand. (after
the first function call it is set to NOT_ENTERED)

Recommendations Consider immediately calling initializeV2 after the proxy upgrade. Since
this contract also functions without initializeV2, it is possible for users
to interact with the contract immediately after the upgrade, before
initializeV2 is called. (If the proxy upgrade and initializeV2 call are not
in the same transaction).

Optionally, one can mark it as NOT_ENTERED by default in the storage
declaration.

Comments /
Resolution

Acknowledged, the client ensured that initializeV2 will be called
directly after the proxy upgrade.

bailsec.io 34

Issue_17
Griefing: requestWithdraw before migrateDelegation can prevent
migration

Severity Informational

Description Whenever the migrateDelegation function is called with the full existing
balance of a validator , a user can simply invoke requestWithdraw with
1 wei beforehand which would then result in a revert of the
migrateDelegation function because _amount is larger than the
existing balance. Notably, it must be the preferred deposit/withdrawal
validator.

Recommendations We do not see the necessity of a change. However, if still desired to fix
one can simply cross-check the staked owned balance for the specific
validator and downsize the _amount parameter to match the balance.

Comments /
Resolution

Resolved.

Issue_18 Griefing: Prevention of withdrawValidatorsReward

Severity Informational

Description The withdrawValidatorsReward function allows for claiming rewards
from multiple different validators within the same transaction. This
function is vulnerable to griefing because a user can simply invoke the
withdrawRewards function to withdraw rewards from one validator in
the parameter list which then results in a revert of the
withdrawValidatorsReward function call due to the following check
within the ValidatorShare contract:

require(rewards >= minAmount, "Too small rewards amount");

Recommendations We do not see the necessity of a change. However, this should be
kept in mind.

bailsec.io 35

Comments /
Resolution

Acknowledged.

Issue_19 Treasury fee granularity might be insufficient

Severity Informational

Description The treasury fee can be set between 0 and 100. The current setup
lacks granularity in scenarios where it is desired to for example set a
fee of 4.5%.

Recommendations Consider if it is ever desired to increase the granularity. If yes, consider
increasing the fee calculation to use BPS of 10_000.

Comments /
Resolution

Resolved. Furthermore, the feePercent type was changed from uint8
to uint16. This should be carefully checked during the upgrade to
ensure no collisions occur.

bailsec.io 36

Issue_20
_submit without preferred depositor being set will always result in
using validatorId = 0

Severity Informational

Description The _submit function fetches the preferred depositor as follows:

 uint256 preferredValidatorId = validatorRegistry

 .preferredDepositValidatorId();
 IValidatorShare validatorShare = IValidatorShare(

 stakeManager.getValidatorContract(preferredValidatorId)

);

If the preferred depositor is not set, this will always return zero,
fetching the preferred validator with the ID = 0 (due to uint256 being
by default 0).

Fortunately, the validator with ID = 0 is not set within the
StakeManager and always corresponds to address(0) which results in a
revert.

Recommendations We do not recommend a change. However, if still desired to fix this,
consider simply reverting directly if the preferred depositor returns ID
= 0.

Comments /
Resolution

Acknowledged.

bailsec.io 37

Issue_21
Setting DEFAULT_ADMIN_ROLE as roleAdmin for BOT role is
redundant

Severity Informational

Description The DEFAULT_ADMIN_ROLE has by default all privileges to
add/revoke roles due to the function returning 0x00 if no roleAdmin is
set:

 /**

 * @dev Returns the admin role that controls `role`. See

{grantRole} and
 * {revokeRole}.

 *
 * To change a role's admin, use {_setRoleAdmin}.

 */

 function getRoleAdmin(bytes32 role) public view override returns
(bytes32) {

 return _roles[role].adminRole;

 }

Therefore, it is not necessary to set it as role admin for the BOT role.
If however, in the previous implementation a different roleAdmin has
been set for the BOT role, this means that the DEFAULT_ADMIN_ROLE
is no longer the roleAdmin and therefore a change is necessary to
restore this state.

Recommendations Consider thinking about if this change is necessary. Additionally we
recommend adding tests to ensure the DEFAULT_ADMIN_ROLE is in
fact the roleAdmin (which is the default case if nothing has been
changed).

Comments /
Resolution

Resolved, this change must be done because a different roleAdmin
has been set in the previous iteration.

bailsec.io 38

Issue_22
Arithmetic operations within ValidatorShare._buyShares can result in
some dusted MATIC within MaticX contract

Severity Informational

Description The MaticX contract allows users to deposit POL and MATIC tokens.
The ERC20 flow is as follows:

a) Transfer MATIC from caller to MaticX contract
b) Transfer MATIC from MaticX contract to StakeManager contract

The arithmetic operations within ValidatorShare._buyShares are as
follows:

uint256 shares = _amount.mul(precision).div(rate);

// clamp amount of tokens in case resulted shares requires less
tokens than anticipated
_amount = rate.mul(shares).div(precision);

As one can already identify from the comment, it may be possible that
_amount is less than the _amount parameter provided.

This means if users want to stake MATIC instead of POL that eventually
not all MATIC is being transferred to the StakeManager contract which
results in some dust MATIC being locked within the MaticX contract.

During our inspection, we could not identify such a scenario to happen
in the current implementation (because slashing is disabled which
means that the rate is always 100 or 1e29)

However, given the existence of this comment, we are still of the
opinion to raise this issue for eventual future upgrades.

Recommendations Consider simply adjusting the stakeRewardAndDistributeFees function
to also enable MATIC.

bailsec.io 39

Comments /
Resolution

Resolved.

Issue_23
Future Upgrade: Slashing after withdrawal request will result in
incorrect output amount

Severity Informational

Description Currently, the StakeManager contract does not allow for slashing.
However, in the future it might be very much possible that this feature
is introduced, which can result in a decrease of the
withdrawExchangeRate in the corresponding ValidatorShare contract.

When inspecting the overall business logic within the MaticX contract,
users can always gauge how much POL tokens they will receive for the
provided amount of MaticX using the following calculation:

maticX * totalPol / totalMaticX

This is also displayed within the convertMaticXToPol function.

However, the Polygon staking architecture uses a slightly different
calculation when transferring out POL tokens during the
unstakeClaimTokens_newPOL function.

A pool and share based approach is used which transfers out POL
tokens based on the so-called withdrawExchangeRate(). This logic
commingles all requested funds with their initial exchange rate and
pays out the average rate. This means that users which have requested
earlier might get more tokens than expected and users which have
requested later might get less tokens. (In the scenario of a slashing
event)

PoC:

bailsec.io 40

Status Quo:

The status quo is that users have deposited in MaticX which mints
MaticX tokens to users and deposits into the ValidatorShare contract
which grants ValidatorShare tokens to the MaticX contract.

- maticXSupply = 1000e18
- balanceValidatorShares = 1000e18
- exchangeRate = 100
- Alice has 500e18 MaticX token and Bob has 500e18 MaticX token

a) Alice calls requestWithdraw which burns 500e18 MaticX tokens.
Alice expects to get 500e18 POL tokens out

> withdrawPool = 500e18
> withdrawShares = 500e18
> withdrawExchangeRate = 100
> unbond.shares = 500e18

b) The validator is slashed which will decrease the exchangeRate to 80

c) Bob calls requestWithdraw which burns 500e18 MaticX tokens. Bob
expects to get 400e18 POL tokens out

> withdrawPool = 900e18
> withdrawShares = 1000e18
> withdrawExchangeRate = 90
> unbond.shares = 500e18

d) Alice calls claimWithdrawal

> Alice receives 450e18 POL instead of the expected 500e18 POL

Recommendations We do not recommend a change as this is based on the underlying

bailsec.io 41

concept of the ValidatorShare contract which will also be influenced
by requests outside from MaticX.

A comment could be added which indicates that in such a scenario
users may not receive the expected output amount.

Comments /
Resolution

Acknowledged.

bailsec.io 42

MaticX (New Deployment)

Disclaimer: This section of the report only displays issues which are related to a new
deployment. Issues which are related to the existing deployment are displayed in the section
above.	

These observations represent extremely sophisticated edge cases and are very rare to be
executed or take place.

Issue_24 Exotic edge-case will result in bricked _submit function

Severity APPLICABLE ONLY TO FORKING

Description A very exotic edge-case can result in a scenario where deposits are
bricked and users will always lose all deposited POL/MATIC tokens.

Consider a scenario where the MaticX contract is successfully
operating for some time and at some point all users decide to redeem
their MaticX for the underlying POL tokens. (This can be either all at
once due to a specific event or step by step)

An event could for example be the scenario if the usecase of MaticX is
non-existent anymore (temporarily) because there are no yield sources
where users can stake MaticX or rewards are paused for POL staking.
However, unrelated to the reason for such a scenario, it is definitely
possible for it to happen.

Once the last user redeems their MaticX for POL tokens, that means
the circulating MaticX supply becomes zero. But eventually there will
be some idle rewards sitting in the contract. The BOT now
automatically restakes these rewards and the contract is suddenly in
the state where there are staked POL tokens without any circulating
MaticX supply.

bailsec.io 43

If a new user deposits, the following calculation for POL -> MaticX is
happening:

uint256 balanceInMaticX = (_balance * totalShares) /
totalPooledAmount;

depending on the provided _balance and the totalPooledAmount
(which was increased due to the restake), it can happen that the user
will not receive any MaticX tokens and the provided POL tokens will be
lost.

PoC:

- MaticX supply = 0
- totalPooledAmount = 1000e18 (due to BOT restaking)

a) Alice deposits 100e18 POL tokens

> (100e18 * 1) / 1000e18 = 0

b) Alice does not receive any MaticX tokens in exchange

Recommendations Consider simply depositing a reasonable amount into the MaticX
contract as governance or independent third-party which will never be
withdrawn. This will ensure a scenario with zero circulating MaticX
tokens and idle rewards can never happen.

Comments /
Resolution

Acknowledged, the client will deposit a reasonable amount which will
never be withdrawn.

bailsec.io 44

Issue_25
MaticX conversion is susceptible to inflation attack (after new
deployment)

Severity APPLICABLE ONLY TO FORKING

Description The MaticX contract is susceptible to the standard inflation attack
which is widely known by an unconsidered edge-case.

The vault inflation attack means that the exchange rate for deposits is
manipulated such that users will receive 0 shares (or a share amount
which is rounded down) for their POL/MATIC deposits, which will then
result in the previous depositor receiving all / the majority of deposits.

The standard vault inflation attack is by simply depositing tokens and
then donating ERC20 tokens to increase the underlying staked
balance. This does however not work for MaticX as the exchange rate
is not dependent on the ERC20 balance. Instead, there are two
different scenarios of how this can be exploited:

First scenario (theoretical):

a) Depositing 1 wei of POL/MATIC (first depositor)
b) Waiting until rewards are accrued and any address with the BOT
role calls stakeRewardsAndDistributeFees
c) The exchange rate is now successfully manipulated

This scenario is rather theoretical than practical because the 1 WEI
deposit will likely not accrue any real rewards

Second scenario (practical):

a) Depositing 1 wei of POL/MATIC (first depositor)
b) Delegating funds from the own address to a ValidatorShare contract
c) Transferring the ValidatorShare token directly to the MaticX contract
d) The exchange rate is now manipulated

bailsec.io 45

PoC:
To run this PoC, paste the test in the file MaticX.spec.t.ts

it("Inflation attack", async function () {
 const { maticX, matic, stakerA, stakerB, stakeManager,

preferredDepositValidatorId } = await loadFixture(deployFixture);

 // Staker A submits 1 wei of MATIC

 await matic.connect(stakerA).approve(maticX.address,
ethers.constants.MaxUint256);

 await maticX.connect(stakerA).submit(1);

 // Staker A directly stakes 1e18 MATIC to the validator

 await matic.connect(stakerA).approve(stakeManager.address,

ethers.constants.MaxUint256);
 const validatorShareAddress = await

stakeManager.getValidatorContract(preferredDepositValidatorId);
 const validatorShare = await

ethers.getContractAt("IValidatorShare", validatorShareAddress);

 const stakeAmount = ethers.utils.parseUnits("1", 18);
 await validatorShare.connect(stakerA).buyVoucher(stakeAmount,

0);

 // Staker A transfers the 1e18 shares of validator to MaticX

 await validatorShare.connect(stakerA).transfer(maticX.address,
stakeAmount);

 // The exchange rate now is inflated (1:1e18+1)
 const exchangeRate = await maticX.convertMaticXToPOL(1);

 expect(exchangeRate[0]).to.equal(ethers.BigNumber.from("1000

000000000000001"));

 // Now, staker B stakes 1e18 MATIC
 await matic.connect(stakerB).approve(maticX.address,

ethers.constants.MaxUint256);

bailsec.io 46

 await maticX.connect(stakerB).submit(stakeAmount);

 // Now we check the shares of staker A and staker B

 const sharesA = await maticX.balanceOf(stakerA.address);
 const sharesB = await maticX.balanceOf(stakerB.address);

 // Staker A has stolen the funds from staker B
 expect(sharesA).to.equal(ethers.BigNumber.from("1"));

 expect(sharesB).to.equal(ethers.BigNumber.from("0"));
});

Additionally, a malicious user can also frontrun the first deposit by
purchasing ValidatorShare tokens and transferring them to the MaticX
contract which breaks the ratio.

Recommendations This exploit only works for the first depositor, since the current on-
chain deployment already has a healthy supply distribution, it is
impossible to execute this exploit.

For future deployments, there are several options to prevent this:
a) Include a minAmountOut parameter
b) Transfer 1000 shares to 0xdead during the first deposit
c) Prevent the scenario where zero shares are received
d) Executing the first deposit after the deployment

We do not recommend updating the proxy implementation with a fix
because this will introduce unnecessary risk. However, in the future
this should be definitely fixed whenever the contract is newly
deployed. Additionally we recommend governance to execute a small
deposit that, in such a scenario where all MaticX tokens have been
redeemed, there is still a small amount allocated to governance which
prevents the init-state.

Comments /
Resolution

Acknowledged, in future deployments it will be ensured that
governance is the first depositor.

	Stader
	Bailsec - Stader Labs MaticX - Final Report

