
Stader

Stader SD Utility Pool
Smart Contract Security Review

Version: 2.1

January, 2024

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5Precision Issue In Health Factor Calculation . 6Operator Can Continue To Utilize The Protocol After Being Liquidated 7Persistent Debt Post Liquidation . 8Malicious Reward Address Blocking Liquidation . 10WETH Stuck In OperatorRewardsCollector During Liquidation Process 11Fee Accounting Rounding Favours Users Over Protocol . 12Price Inflation Of cTokenShare When Supply Is Zero . 14Non-Reentrant Modifier Conflict . 15Lost SD Rewards . 16Rounding Error Causing Loss Of Funds . 18
claim() Function Always Reverts If Liquidation Occurred . 19Modifications To Rewards And Fees Can Apply Retroactively . 20Missing Price Staleness Checks For SD/ETH Oracle . 21Lack Of Slippage Parameter During Withdrawals . 22Precision Loss In Reward Calculation . 23Potentially Excessive SD/ETH TWAP Time Window . 24Small Precision Loss In requestWithdraw() . 25Operator Can Grief Liquidations . 26Miscellaneous General Comments . 27

A Test Suite 29

B Vulnerability Severity Classification 31

1

Stader SD Utility Pool Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Stader Utility pool smartcontracts. The review focused solely on the security aspects of the Solidity implementation of the contract,though general recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Stader smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Stader smart contracts in scope.

Overview

The Stader Utility Pool (SD Utility Pool) is a feature designed to enhance the utility and stability of SD tokenswithin the Stader ecosystem.
The SD Utility Pool was introduced to eliminate the barrier for node operators who needed SD tokens to operate
ETHx nodes. By allowing node operators to utilize SD tokens from the Utility Pool for a fee, thereby removingtheir need to hold SD tokens directly.
For SDHolders, it provides an opportunity for holders to earn delegation fees. Additionally, it helps reduce sellingpressure on SD tokens, increases demand, and contributes to price stability.

Page | 2

Stader SD Utility Pool Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the ETHx repository. Scope of this review was strictly limitedto changes introduced in PR 212.
Retesting was performed on commit 21ba418.
Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. This includes their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [?, ?].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 19 issues during this assessment. Categorised by their severity:
• Critical: 1 issue.
• High: 4 issues.
• Medium: 5 issues.
• Low: 2 issues.
• Informational: 7 issues.

Note: considering the large number of critical/high severity issues identified during this time-boxed engagement, Sigma
Prime recommends further security testing on the code base in scope prior to any deployment.

Page | 3

https://github.com/stader-labs/ethx
https://github.com/stader-labs/ethx/pull/212
https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Stader SD Utility Pool Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Stader smart contracts.Each vulnerability has a severity classification which is determined from the likelihood and impact of each issueby the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
SDP-01 Precision Issue In Health Factor Calculation Critical Resolved

SDP-02 Operator Can Continue To Utilize The Protocol After Being Liquidated High Resolved

SDP-03 Persistent Debt Post Liquidation High Resolved

SDP-04 Malicious Reward Address Blocking Liquidation High Resolved

SDP-05 WETH Stuck In OperatorRewardsCollector During Liquidation Process High Resolved

SDP-06 Fee Accounting Rounding Favours Users Over Protocol Medium Resolved

SDP-07 Price Inflation Of cTokenShare When Supply Is Zero Medium Resolved

SDP-08 Non-Reentrant Modifier Conflict Medium Resolved

SDP-09 Lost SD Rewards Medium Resolved

SDP-10 Rounding Error Causing Loss Of Funds Medium Resolved

SDP-11 claim() Function Always Reverts If Liquidation Occurred Low Resolved

SDP-12 Modifications To Rewards And Fees Can Apply Retroactively Low Resolved

SDP-13 Missing Price Staleness Checks For SD/ETH Oracle Informational Closed

SDP-14 Lack Of Slippage Parameter During Withdrawals Informational Closed

SDP-15 Precision Loss In Reward Calculation Informational Closed

SDP-16 Potentially Excessive SD/ETH TWAP Time Window Informational Closed

SDP-17 Small Precision Loss In requestWithdraw() Informational Closed

SDP-18 Operator Can Grief Liquidations Informational Closed

SDP-19 Miscellaneous General Comments Informational Resolved

5

Stader SD Utility Pool Detailed Findings

SDP-01 Precision Issue In Health Factor Calculation
Asset SDUtilityPool.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

All healthy positions can be liquidated due to precision issues in calculating userData.healthFactor .
Inside liquidationCall() , the function expects userData.healthFactor to be expressed in 18 decimals:

371 if (userData.healthFactor > DECIMAL) {
revert NotLiquidatable();

373 }

However, the calculation of healthFactor inside getUserData() omits any decimals:
688 uint256 healthFactor = (totalInterestSD == 0)

? type(uint256).max
690 : (totalCollateralInSD * riskConfig.liquidationThreshold) / (totalInterestSD * 100);

All health factor values returned by getUserData() will be less than DECIMAL (1e18), and hence, all positions can beliquidated even if they are healthy.

Recommendations

Scale the calculation of healthFactor up by 18 decimals.
688 uint256 healthFactor = (totalInterestSD == 0)

? type(uint256).max
690 : (totalCollateralInSD * riskConfig.liquidationThreshold * DECIMALS) / (totalInterestSD * 100);

Resolution

Decimal scaling was added to getUserData() .
This issue has been addressed in commit 21ba418.

Page | 6

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-02 Operator Can Continue To Utilize The Protocol After Being Liquidated
Asset SDUtilityPool.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

In the SDUtilityPool the functions utilize() and utilizeWhileAddingKeys() lack necessary checks to verify theoperator’s current status. As a result, operators who have already been liquidated, or those with an unhealthy healthfactor, are still able to call these functions to further utilize from the pool.
A significant concern arises when an operator, having already undergone liquidation, continues to operate even if theirhealth factor deteriorates to an unhealthy level. The system’s current logic prevents an account from being liquidatedmore than once, preventing operators from subsequent liquidations, regardless of their health factor status. This couldpotentially lead to protocol insolvency.
Additionally, this issue has a cascading effect on the OperatorRewardsCollector.withdrawableInEth() function. An
unhealthy health factor could trigger a revert due to an underflow issue on line [71] of OperatorRewardsCollector .This underflow results in funds getting stuck in the contract during the claim process.

Recommendations

Implement checks within utilize() and utilizeWhileAddingKeys() functions, to ensure that the operator has notbeen already liquidated and ensure the health factor is above the liquidation threshold.

Resolution

Validation was added to _utilize() to check that the operator has not been already liquidated and has a good healthfactor.
OperatorRewardsCollector.withdrawableInEth() now returns 0 if there isn’t enough collateral to cover total SD interestand open liquidations.
This issue has been addressed in commit 21ba418.

Page | 7

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-03 Persistent Debt Post Liquidation
Asset OperatorRewardsCollector.sol, SDUtilityPool.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

Pending and total interests are not correctly addressed in the liquidation logic.
In SDUtilityPool.liquidationCall() , the liquidator pays off all of the utilizer’s interest. To reset the utilizer’s tracked
total interest back to 0, their utilizeIndex is updated to the global utilizeIndex value.

375 utilizerData[account].utilizeIndex = utilizeIndex

However, if the utilizer has updated their UtilizerStruct by calling _utilize() or _repay() after their initial uti-
lization, then updating the utilizer’s utilizeIndex does not reset the utilizer’s tracked total interest back to 0. This
is because _utilize() and _repay() compound the utilizer’s interest by adding any pending interest back to their
tracked principal amount and updating their utilizeIndex .
In _utilize() :

782 uint256 accountUtilizedPrev = _utilizerBalanceStoredInternal(utilizer);

784 utilizerData[utilizer].principal = accountUtilizedPrev + utilizeAmount;
utilizerData[utilizer].utilizeIndex = utilizeIndex;

786 totalUtilizedSD += utilizeAmount;

In _repay() :
810 uint256 feeAccrued = accountUtilizedPrev -

ISDCollateral(staderConfig.getSDCollateral()).operatorUtilizedSDBalance(utilizer);
812 if (!staderConfig.onlyStaderContract(msg.sender, staderConfig.SD_COLLATERAL())) {

if (repayAmountFinal > feeAccrued) {
814 ISDCollateral(staderConfig.getSDCollateral()).reduceUtilizedSDPosition(

utilizer,
816 repayAmountFinal - feeAccrued

);
818 }

}
820 feePaid = Math.min(repayAmountFinal, feeAccrued);

utilizerData[utilizer].principal = accountUtilizedPrev - repayAmountFinal;
822 utilizerData[utilizer].utilizeIndex = utilizeIndex;

This can cause several issues:

1. During liquidation call, the liquidator pays for the utilizer’s entire totalInterestSD , but not all or even none ofthe utilizer’s debt is cleared.
2. Since the liquidation process does not adequately address the total interest due, the

OperatorRewardsCollector.claimFor() function can potentially revert if:
(a) the utilizer has no remaining active keys and needs to withdraw their utilized SD balance. The utilizer willnot have enough SD balance and revert on line [132] of SDCollateral.withdrawOnBehalf() .

Page | 8

Stader SD Utility Pool Detailed Findings

(b) the operator’s health factor falls below 1e18. An underflow issue on line [71] of
OperatorRewardsCollector.withdrawableInEth() will cause the call to revert.

The issue can be exploited as follows:

1. Set Up: Initialize variables and deposit amounts for the liquidation scenario.
2. Operator Action: The operator (Bob) utilizes SD from the SDUtilityPool , leading to the accrual of fees.
3. Interest Accrual: Allow significant fees to accrue over time, simulating long-term use of the pool.
4. Repay Zero Amount: Bob attempts to repay a zero amount, which updates his utilizeIndex but does not affecthis total interest due.
5. Liquidation Call: Alice initiates a liquidation call against Bob.
6. Post-Liquidation Check: Despite the liquidation process, Bob’s total interest remains unchanged, demonstratingthat the liquidation did not clear Bob’s debt.

Recommendations

Ensure that both pending and total interests are fully addressed in the liquidation logic of SDUtilityPool by calling
_repay() to handle the clearing of debt instead of updating the utilizer’s utilizeIndex .
This change will ensure the operator’s financial obligations are completely resolved post-liquidation, thereby restoringthe health of their position.

Resolution

liquidationCall() was modified to call repay() .
OperatorRewardsCollector.withdrawableInEth() now returns 0 if there isn’t enough collateral to cover total SD interestand open liquidations.
This issue has been addressed in commit 21ba418.

Page | 9

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-04 Malicious Reward Address Blocking Liquidation
Asset OperatorRewardsCollector.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

In OperatorRewardsCollector._claim() , the function responsible for finalizing liquidations and transferring ETH to theoperator reward address is vulnerable to Denial-of-Service (DoS) attacks. An operator can set a malicious rewardaddress that causes the transaction to revert, effectively preventing the liquidation process.
The process can be outlined as such:

1. Initial Setup: Alice delegates a specified amount of SD as collateral.
2. Validator Preparation: Bob adds a new validator using SD from SDUtilityPool .
3. Fees Accrual: Accrue fees for several blocks so that Bob’s health factor becoming unhealthy.
4. Bob’s Liquidation: Alice liquidates Bob’s position by calling liquidationCall() .
5. Operator Reward Address Change: Bob maliciously changes his reward address to a contract designed to reverttransactions when receiving ETH.
6. Finalize Liquidation: Alice calls claimFor() onBob to complete the liquidation. The amount specifiedwhen calling

claimFor() will be non-zero (since zero represents Bob’s full balance).
7. Transaction Failure: Since the amount is non-zero, in the function _claim() , there will be an attempt to transfer

the amount to the malicious reward address, which will revert, preventing the completion of the liquidationprocess.

Recommendations

Convert the ETH balance to WETH, similar to how the liquidator is paid, to prevent a malicious reward address fromblocking the liquidation process.

Resolution

A new function claimLiquidation() was added for the liquidator to claim their portion separately.
This issue has been addressed in commit 21ba418.

Page | 10

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-05 WETH Stuck In OperatorRewardsCollector During Liquidation Process
Asset OperatorRewardsCollector.sol

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

In OperatorRewardsCollector.sol , an incorrect amount of ETH is converted into WETH in the
_completeLiquidationIfExists() function, resulting in excess WETH being stuck in OperatorRewardsCollectorcontract.
Specifically, the contract does not account for the operatorLiquidation.totalFeeInEth when depositing into WETH,converting more than necessary to pay the liquidator, which leaves an amount of WETH stuck in the contract.
This issue leads to operators being unable to withdraw their full remaining balance, gradually making the protocolinsolvent as stuck funds accumulate.

Recommendations

Adjust the deposit logic in OperatorRewardsCollector to ensure that the operatorLiquidation.totalFeeInEth is ex-cluded from the WETH deposit. This change will prevent funds from being locked in the contract and allow operators tofully withdraw their balances post-liquidation.

Resolution

_completeLiquidationIfExists() was modified according to the recommendations.
This issue has been addressed in commit 21ba418.

Page | 11

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-06 Fee Accounting Rounding Favours Users Over Protocol
Asset SDUtilityPool.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Low Likelihood: High

Description

Rounding errors in accrueFee() may result in accrual of bad debt over time.
Inside the accrueFee() function, fees are accrued by scaling both totalUtilizedSD and utilizeSD up by the
simpleFeeFactor .

338 /*
* Calculate the fee accumulated into utilized and totalProtocolFee and the new index:

340 * simpleFeeFactor = utilizationRate * blockDelta
* feeAccumulated = simpleFeeFactor * totalUtilizedSD

342 * totalUtilizedSDNew = feeAccumulated + totalUtilizedSD
* totalProtocolFeeNew = feeAccumulated * protocolFeeFactor + totalProtocolFee

344 * utilizeIndexNew = simpleFeeFactor * utilizeIndex + utilizeIndex
*/

346
uint256 simpleFeeFactor = utilizationRatePerBlock * blockDelta;

348 uint256 feeAccumulated = (simpleFeeFactor * totalUtilizedSD) / DECIMAL;
totalUtilizedSD += feeAccumulated;

350 accumulatedProtocolFee += (protocolFee * feeAccumulated) / DECIMAL;
utilizeIndex += (simpleFeeFactor * utilizeIndex) / DECIMAL;

Since utilizeIndex < totalUtilized , there is a small discrepancy between the total amount of fees that accrue to
totalUtilizedSD and the amount of fees that accrue to each utilizer via utilizeIndex , which results in roundingerrors from integer division.
Due to this behaviour, utilizers end up paying less interest than recorded (and claimable by delegators), potentiallyresulting in bad debt.

Recommendations

Although the rounding error is minimal, it is still preferable for any rounding to favour the protocol over users.
Consider rounding up the accruing of fees to utilizeIndex and calculations of utilizer balances. If this is done, then
the _repay() function needs to be adjusted to account for potential underflow scenarios.
An example of what the _repay() adjustment may look like:

821 utilizerData[utilizer].principal = accountUtilizedPrev - repayAmountFinal;
utilizerData[utilizer].utilizeIndex = utilizeIndex;

823 totalUtilizedSD = totalUtilizedSD > repayAmountFinal ? totalUtilizedSD - repayAmountFinal : 0;
emit Repaid(utilizer, repayAmountFinal);

Page | 12

Stader SD Utility Pool Detailed Findings

Resolution

Calculation of utilizeIndex was modified to round up and _repay() modified according to the recommendations.
This issue has been addressed in commit 21ba418.

Page | 13

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-07 Price Inflation Of cTokenShare When Supply Is Zero
Asset SDUtilityPool.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

If the current supply is zero, an attacker can perform a share inflation attack during delegation.
This can be illustrated through the following steps:

1. Alice wants to delegate 1 SD token (which has 18 decimals) to the utility pool calling delegate() .
2. The pool is empty. The exchange rate is the default 1 SD per cTokenShare.
3. Bob sees Alice’s transaction in the mempool and decides to sandwich it.
4. Bob delegates 1 wei of SD and receives 1 wei of cTokenShare in exchange, The exchange rate is now 1 SD per

cTokenShare.
5. Bob transfers 1 SD (1e18 wei) to the vault using an ERC-20 transfer. No new cTokenShares are created. Hence, theexchange rate is now 1e18 + 1 SD per cTokenShare, or 1e18 + 1 wei of SD per wei of cTokenShare.
6. Alice’s deposit is executed. Her 1e18 wei of SD tokens are worth less than 1 wei of cTokenShare. Therefore, thecontract takes the assets, but does not add shares. Alice has effectively "donated" her tokens.

Recommendations

Consider implementing a decimal offset virtual shares and assets to the pool.
See the following for more details: Addressing Inflation Attacks With Virtual Shares And Assets

Resolution

The Stader Team has elected to resolve this issue using an initial delegate of 1 SD during the initialization.
This issue has been addressed in commit 21ba418.

Page | 14

https://ethereum-magicians.org/t/address-eip-4626-inflation-attacks-with-virtual-shares-and-assets/12677
https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-08 Non-Reentrant Modifier Conflict
Asset PermissionlessNodeRegistry.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Low Likelihood: High

Description

In the PermissionlessNodeRegistry contract, the function addValidatorKeys() is marked with two nonReentrantmodifiers.
This double application of the nonReentrant modifier can lead to unexpected behaviour, causing the function to revertdue to the reentrancy guard.

Recommendations

Remove the redundant modifier to prevent unwarranted reverts and align with standard smart contract practices.

Resolution

The redundant modifier was removed on addValidatorKeys() .
This issue has been addressed in commit 21ba418.

Page | 15

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-09 Lost SD Rewards
Asset SDIncentiveController.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

SD rewards are lost if no one delegates or requests withdrawals before rewardEndBlock.
In SDIncentiveController , the rewardPerToken() function calculates the current reward-per-token value based on
the current block.number . The following lines determine the reward-per-token once rewards have ended:

105 if (block.number >= rewardEndBlock) {
return rewardPerTokenStored;

107 }

Calling updateReward() assigns rewardPerTokenStored = rewardPerToken() . If updateReward() has not been called
at block.number == rewardEndBlock - 1 , then rewards in the range [lastUpdateBlockNumber, rewardEndBlock - 1]

do not get accrued and are lost, since rewardPerToken() will always return the outdated rewardPerTokenStored .
updateReward() is only called if a delegator delegates or requests the withdrawal of SD. Hence, if there are no dele-
gations or withdrawal requests right before rewards inside SDIncentiveController end, then delegators lose out onSD incentive rewards.
Furthermore, since >= is used in the comparison, rewards only accrue up to block number rewardEndBlock - 1. SD thatis delegated inside block number rewardEndBlock - 1 will not accrue any rewards.

Recommendations

Use > instead of >= in the comparison. This will ensure that rewards are accrued up to block number rewardEndBlock.
Consider adding logic into rewardPerToken() to account for the case where block.number > rewardEndBlock but
rewardPerTokenStored is outdated. Here’s an example:

105 if (block.number > rewardEndBlock) {
// If the last update block is before the end of the reward period,

107 // calculate the reward per token at the end of the reward period
if (lastUpdateBlockNumber < rewardEndBlock) {

109 return rewardPerTokenStored +
(((rewardEndBlock - lastUpdateBlockNumber) * emissionPerBlock * DECIMAL) /

111 ISDUtilityPool(staderConfig.getSDUtilityPool()).cTokenTotalSupply());
}

113 return rewardPerTokenStored;
}

Resolution

block.number was replacedwith _lastRewardTime() which takes into account the rewards up to the rewardEndBlock .
Page | 16

Stader SD Utility Pool Detailed Findings

This issue has been addressed in commit 21ba418.

Page | 17

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-10 Rounding Error Causing Loss Of Funds
Asset OperatorRewardsCollector.sol, SDUtilityPool.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Low Likelihood: High

Description

There is a rounding error in the OperatorRewardsCollector.withdrawableInEth() function, such that it can cause ascenario where an operator can lose a small amount of ETH even when not utilizing the SD Utility Pool.
When calculating total collateral in withdrawableInEth() , the collateral value is converted from ETH to SD, then back
to ETH. This conversion process, which occur in the getUserData() and withdrawableInEth() functions, will cause
withdrawableInEth() to ultimately round down the amount of ETH the operator is entitled to withdraw.
The conversion process is as follows:
In SDUtilityPool.getUserData() :

671 uint256 totalCollateralInSD = ISDCollateral(staderConfig.getSDCollateral()).convertETHToSD(
totalCollateralInEth

673);

In OperatorRewardsCollector.withdrawableInEth() :
78 uint256 availableBalance = ISDCollateral(staderConfig.getSDCollateral()).convertSDToETH(withdrawableInSd);

This rounding down effect can lead to scenarios where operators are unable to withdraw their full entitled ETH balance,despite not having any outstanding interest or open liquidations.

Recommendations

Consider calculating withdrawableInEth instead of withdrawableInSd by changing userData.totalInterestSD intoETH.
This will result in a small rounding down in favour of the user in withdrawableInEth() , so we recommend that the totalinterest be rounded up.

Resolution

The UserData struct was modified to return totalCollateralInEth and calculation of totalInterestAdjustedInEth

rounds up in withdrawableInEth() .
This issue has been addressed in commit 73514c3.

Page | 18

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...73514c3

Stader SD Utility Pool Detailed Findings

SDP-11 claim() Function Always Reverts If Liquidation Occurred
Asset OperatorRewardsCollector.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

In the OperatorRewardsCollector contract, the claim() function will always revert when there is an existing liqui-
dation for the operator. This is due to the claim() function attempting to claim the operator’s full balance withouttaking into account the amount that will be paid to settle any liquidations.
Consequently, claim() does not work as intended and operators are forced to use the alternative claimFor() func-tion, specifying an amount less than their total rewards balance, to successfully claim their rewards.
The issue can be illustrated through the following steps:

1. Liquidation Setup: Initiate a liquidation scenario for an operator.
2. Attempted Claim Process: The operator (Bob), after making a deposit (e.g. 5 ETH), tries to claim rewards using the

claim() function.
3. Revert on Claim Attempt: The call to claim() reverts due to the ongoing liquidation, even though the operator isentitled to a certain amount of rewards.

Recommendations

The testing team recommends revising the claim() function to take into account the amount paid for liquidations, sothat the remainder operator balance can be successfully withdrawn.

Resolution

The claim() function was modified to pay for any liquidations first before calculating the withdrawable amount.
This issue has been addressed in commit 21ba418.

Page | 19

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-12 Modifications To Rewards And Fees Can Apply Retroactively
Asset SDUtilityPool.sol, SDIncentiveController.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

In the SDIncentiveController contract, the updateEmissionRate() function allows for modifying the emission rateeven during an ongoing reward period. This could impact the reward calculation for blocks that have not yet beenupdated using the old emission rate.
Specifically, if updateReward() has not been called before updating the emission rate, the new emission rate couldretroactively affect the accrual of rewards for past blocks. This situation creates inconsistency in the reward calcula-tions, potentially benefiting some users while disadvantaging others.
The same issue exists inside the SDUtilityPool contract with the updateProtocolFee() and
updateUtilizationRatePerBlock() functions. Changing the protocol fee or utilization rates when accrueFee()has not been called in the same block impacts the fee calculation for blocks that have not been updated yet using theold rates.

Recommendations

In SDIncentiveController , call updateReward(address(0)) at the start of the updateEmissionRate() function.
In SDUtilityPool , call accrueFee() at the start of the updateProtocolFee() and updateUtilizationRatePerBlock()functions.
These changes ensure that old rewards and fees have been accrued with the current rates before any changes aremade, maintaining consistency in reward and fee calculations across all blocks.

Resolution

SDIncentiveController was modified so that it is not possible to change the emission rate during a reward block.
SDUtilityPool was modified according to the recommendations.
This issue has been addressed in commit 21ba418.

Page | 20

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Detailed Findings

SDP-13 Missing Price Staleness Checks For SD/ETH Oracle
Asset SDCollateral.sol, StaderOracle.sol

Status Closed: See Resolution
Rating Informational

Description

convertETHToSD() and convertSDToETH() use the StaderOracle to grab the SD/ETH price. However, there are noprice staleness checks performed.
If the oracle was to halt such as in the case where not enough trusted nodes submit a price, an outdated and incorrectprice would be used.

Recommendations

Consider modifying the StaderOracle.getSDPriceInETH() function to also return the reportingBlockNumber .
This addition would allow for an evaluation of the price information. By establishing and applying a block threshold, itwould be possible to determine whether the current price is stale.

Resolution

The issue was acknowledged by the project team with the following comment:

"Stader ETHx is supported by 7 Oracles (Stader guardians), and they have worked efficiently in the 7 months of
our operation. The correct SD price is provided every 24 hours, and there has never been an incident where the
price was not updated."

Page | 21

Stader SD Utility Pool Detailed Findings

SDP-14 Lack Of Slippage Parameter During Withdrawals
Asset SDUtilityPool.sol

Status Closed: See Resolution
Rating Informational

Description

SDUtilityPool enforces a mandatory delay period, termed as minBlockDelayToFinalizeRequest , which spans 7 days
between invoking the requestWithdraw() function and the subsequent finalizeDelegatorWithdrawalRequest() .
During this period, potential fluctuations in the exchange rate can occur.
This is particularly relevant as the finalizeDelegatorWithdrawalRequest() function computes
minSDRequiredToFinalizeRequest based on the prevailing exchange rate at the time of finalization.

Recommendations

Consider allowing the user to specify a slippage parameter to enable users to specify the degree of variation in SD theyare willing to accept at the time of withdrawal completion.

Resolution

The issue was acknowledged by the project team with the following comment:

"The Utility Pool ERwill go down in an extremely rare scenario wheremost of the ETHx node operators are slashed.
Even in such rare cases, the ETH deposited by the node operators will take precedence to cover the slashing
penalty, followed by their self-bonded SD collateral. Only after exhausting these options will the Utilized SD
collateral be used to address any remaining deficiencies. Additionally, every time a user delegates SD to the Utility
Pool, we display a disclaimer explaining the slashing risk and obtain confirmation from thembefore SD delegation."

Page | 22

Stader SD Utility Pool Detailed Findings

SDP-15 Precision Loss In Reward Calculation
Asset SDIncentiveController.sol

Status Closed: See Resolution
Rating Informational

Description

In SDIncentiveController , there is a potential, albeit unlikely, risk of precision loss in reward calculations.
This scenario may occur when the totalSupply of cTokens significantly outweighs the emissionPerBlock . Precisionloss in reward distribution can lead to users receiving slightly fewer rewards than expected.

Recommendations

Although no immediate fix is necessary, the Stader team should be aware of this potential issue and set reasonableemission rates relative to the total cToken supply.
A guideline to prevent significant precision loss is to ensure that the product of emissionPerBlock and 1e18 is greaterthan the totalSupply .

Resolution

The issue was acknowledged by the project team with the following comment:

"Minimum reward is 1e18."

Page | 23

Stader SD Utility Pool Detailed Findings

SDP-16 Potentially Excessive SD/ETH TWAP Time Window
Asset StaderOracle.sol

Status Closed: See Resolution
Rating Informational

Description

According to Stader Labs’ documentation, the SD price oracle is a 24 hour TWAP.
During times of high volatility and price movement, the SD price oracle may return a very outdated price. This couldresult in delayed or omitted liquidations that could lead to bad debt for SDUtilityPool .

Recommendations

Consider reducing the time-window of the TWAP oracle to a shorter period, such as 1 hour.

Resolution

The issue was acknowledged by the project team with the following comment:

"The SD price is updated every 24 hours considering the average price for the day. This is done to offset price
fluctuations and for the simplicity of operations."

Page | 24

Stader SD Utility Pool Detailed Findings

SDP-17 Small Precision Loss In requestWithdraw()

Asset SDUtilityPool.sol

Status Closed: See Resolution
Rating Informational

Description

There is a small precision loss in requestWithdraw() due to division operation occurring before multiplication.
requestWithdraw() takes in the _cTokenAmount to withdraw and calculates the sdRequested using the
_exchangeRateStoredInternal() function.

140 uint256 exchangeRate = _exchangeRateStoredInternal();
ISDIncentiveController(staderConfig.getSDIncentiveController()).claim(msg.sender);

142 delegatorCTokenBalance[msg.sender] -= _cTokenAmount;
delegatorWithdrawRequestedCTokenCount[msg.sender] += _cTokenAmount;

144 uint256 sdRequested = (exchangeRate * _cTokenAmount) / DECIMAL;

The exchange rate is calculated by dividing the adjusted pool balance by cTokenTotalSupply .
862 /*

* Otherwise:
864 * exchangeRate = (totalCash + totalUtilizedSD - totalFee) / totalSupply

*/
866 uint256 poolBalancePlusUtilizedSDMinusReserves = getPoolAvailableSDBalance() +

totalUtilizedSD -
868 accumulatedProtocolFee;

uint256 exchangeRate = (poolBalancePlusUtilizedSDMinusReserves * DECIMAL) / cTokenTotalSupply;

This means that a division operation occurs before multiplication, which leads to precision loss in the amount of
sdRequested . Due to the amount of decimals used in the calculations, the rounding error is small.

Recommendations

Consider allowing the exchange rate function to take in _cTokenAmount and calculating the sdAmountOut , instead of
getting the exchange rate for 1 cToken and then multiplying that to get sdRequested .
The same fix could be applied to requestWithdrawWithSDAmount() by adding another function that calculates the
cTokenIn amount based on sdAmountOut .

Resolution

The issue was acknowledged by the project team with the following comment:

"The difference is very minimal and favours protocol over users."

Page | 25

Stader SD Utility Pool Detailed Findings

SDP-18 Operator Can Grief Liquidations
Asset OperatorRewardsCollector.sol

Status Closed: See Resolution
Rating Informational

Description

The operator can prevent liquidations by conducting just-in-time ETH transfers to OperatorRewardsCollector.sol .
When an operator’s health factor becomes unhealthy, indicating potential liquidation, they can utilize the depositFor()

function in OperatorRewardsCollector to temporarily increase their health factor due to increasing their ETH balances.
This increase in health factor can cause any impending liquidation call to revert. Subsequently, the operator can imme-diately reclaim their balances using the claim() function. This enables the operator to grief any liquidations with littlecost.

Recommendations

Consider implementing access control on the depositFor() function. The access should be restricted such that it can
only be invoked from certain contracts: reward vaults and PermissionlessNodeRegistry .

Resolution

The issue was acknowledged by the project team with the following comment:

"It is a normal form of depositing more collateral to avoid liquidation."

Page | 26

Stader SD Utility Pool Detailed Findings

SDP-19 Miscellaneous General Comments
Asset All contracts
Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Return Value For finalizeDelegatorWithdrawalRequest()

Related Asset(s): SDUtilityPool.sol
It is currently not possible to extract the nextRequestIdToFinalize variable without listening to emitted events.
However, returning the nextRequestIdToFinalize variable could be beneficial for testing purposes.
The following modification could be considered:

178 function finalizeDelegatorWithdrawalRequest() external override whenNotPaused returns (uint256) {
accrueFee();

180 uint256 exchangeRate = _exchangeRateStoredInternal();
...

182 nextRequestIdToFinalize = requestId;
sdReservedForClaim += sdToReserveToFinalizeRequests;

184 emit FinalizedWithdrawRequest(nextRequestIdToFinalize);

186 return nextRequestIdToFinalize;
}

2. riskConfig Is Not Initialised In The initialize() Function
Related Asset(s): SDUtilityPool.sol
riskConfig parameters are not initialised inside the initialize() function. They have to be initialised by calling
the updateRiskConfig function after deployment.
Consider initializing riskConfig in the initialize() function.

3. Simplify The SDAsCollateral() Function
Related Asset(s): SDCollateral.sol
The depositSDAsCollateral() function can be simplified by calling the depositSDAsCollateralOnBehalf() func-
tion and following the same pattern as the withdraw() and withdrawOnBehalf() functions.
Consider implementing the following refactor of the code:

46 function depositSDAsCollateral(uint256 _sdAmount) external override {
depositSDAsCollateralOnBehalf(msg.sender, _sdAmount)

48 }

4. Naming Convention
Related Asset(s): SDIncentiveController.sol, SDCollateral.sol

(a) SDIncentiveController.updateReward()

(b) SDCollateral.slashSD()

Page | 27

Stader SD Utility Pool Detailed Findings

Ensure that internal functions have the _ prefix, for consistency.
5. delegatorWithdrawRequestedCTokenCountmapping is unnecessary

Related Asset(s): SDUtilityPool.sol
The delegatorWithdrawRequestedCTokenCount mapping stores the current total amount of cTokens that the del-egator has requested to withdraw. However, the mapping is not used in any business logic in any functions andcontracts and can be removed to save gas.
Consider removing the delegatorWithdrawRequestedCTokenCount mapping from SDUtilityPool to save gas on
SSTORE operations.

6. Delegation Limit
Related Asset(s): SDUtilityPool.sol
The documentation for SDUtilityPool mentions there is a 1 SD minimum delegation limit.
However the minimum is not enforced in the delegate() function.
Ensure that delegate limits are enforced where appropriate.

7. Reward Update
Related Asset(s): SDUtilityPool.sol
Calling updateRewardForAccount() on line [147] is redundant as claim() was already called on line [141], whichjust updated the reward.
Additionally, rewards will not be updated anymore from this point on during the withdraw process, since it willtake 7 days to finalize.
Make sure to call updateRewardForAccount() during finalizeDelegatorWithdrawalRequest() and remove the
TODO comment.

8. Reward Withdraw
Related Asset(s): SDUtilityPool.sol
User will be transferred the full amount of their reward balance immediately when calling
requestWithdrawWithSDAmount() , even if the withdraw request was just for 1 wei
Ensure that rewards are sent after the withdraw has been finalized and claimed in SDUtilityPool.claim() .

9. Redundant Check
Related Asset(s): SDUtilityPool.sol
The check accrualBlockNumber != block.number is redundant on line 740 as we are setting the
accrualBlockNumber = block.number inside the accrueFee() function that in turn is called by the exter-
nal delegate()

10. Missing Address Validation
Related Asset(s): SDCollateral.sol
The depositSDAsCollateralOnBehalf() function in the SDCollateral contract lacks a check for the validity of
the _operator address. It is important to validate that _operator is a non-zero address to avoid potential losses.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The relevant issues have been addressed in commit 21ba418.
Page | 28

https://github.com/stader-labs/ethx/compare/d7c3381a375e7ecb4619302b4dd35a5306b4b360...21ba418

Stader SD Utility Pool Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The forge framework was used to perform these tests and the output is given below.
Running 2 tests for test/PermissionedNodeRegistry.t.sol:PermissionedNodeRegistryTests
[PASS] test_addValidatorKeys() (gas: 1616462)
[PASS] test_addValidatorKeys_noCollateral() (gas: 892349)
Test result: ok. 2 passed; 0 failed; 0 skipped; finished in 14.51ms

Running 2 tests for test/SocializingPool.t.sol:SocializingPoolTests
[PASS] test_claim() (gas: 5546580)
[PASS] test_claimAndDepositSD() (gas: 5727432)
Test result: ok. 2 passed; 0 failed; 0 skipped; finished in 18.87ms

Running 2 tests for test/PermissionlessNodeRegistry.t.sol:PermissionlessNodeRegistryTests
[PASS] test_addValidatorKeys() (gas: 1885894)
[PASS] test_addValidatorKeysWithUtilizeSD() (gas: 2339573)
Test result: ok. 2 passed; 0 failed; 0 skipped; finished in 24.05ms

Running 4 tests for test/StaderConfig.t.sol:StaderConfigTests
[PASS] test_updateSDIncentiveController_notOwner() (gas: 80122)
[PASS] test_updateSDIncentiveController_proper() (gas: 29849)
[PASS] test_updateSDUtilityPool_notOwner() (gas: 80156)
[PASS] test_updateSDUtilityPool_proper() (gas: 29958)
Test result: ok. 4 passed; 0 failed; 0 skipped; finished in 9.51ms

Running 1 test for test/PoolUtils.t.sol:PoolUtilsTests
[PASS] test_processOperatorExit(address,uint256) (runs: 10000, u: 40051, ~: 40051)
Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 1.03s

Running 28 tests for test/SDUtilityPool.t.sol:SDUtilityPoolTests
[PASS] test_Delegate() (gas: 275956)
[PASS] test_FinalizeDelegatorWithdrawalRequest() (gas: 755367)
[PASS] test_FinalizeDelegatorWithdrawalRequestBatch() (gas: 126506756)
[PASS] test_accrueFee_accountingFavoursProtocol() (gas: 153344113)
[PASS] test_accrueFee_precisionLoss() (gas: 733123498)
[PASS] test_deployerSDRewards() (gas: 421702)
[PASS] test_exchangeRateStored() (gas: 19702097)
[PASS] test_firstDelegatorPriceManip() (gas: 499861)
[PASS] test_getUserData_healthFactorDecimals() (gas: 2417467)
[PASS] test_liquidation() (gas: 3145477)
[PASS] test_liquidation_WETHStuck() (gas: 3145735)
[PASS] test_liquidation_claimRevert() (gas: 3145499)
[PASS] test_liquidation_frontrun() (gas: 3016027)
[PASS] test_liquidation_liquidateAnyone() (gas: 2191892)
[PASS] test_liquidation_repayZeroThenLiquidate() (gas: 3387770)
[PASS] test_liquidation_rewardAddressDOS() (gas: 3195935)
[PASS] test_liquidation_underflow() (gas: 3195892)
[PASS] test_repay() (gas: 2660515)
[PASS] test_repayAfterliquidation() (gas: 3381840)
[PASS] test_requestWithdraw() (gas: 437408)
[PASS] test_requestWithdrawWithSDAmount() (gas: 437463)
[PASS] test_requestWithdraw_precisionLoss() (gas: 19421141)
[PASS] test_updateProtocolFee_affectsPastBlocks() (gas: 2441183)
[PASS] test_updateUtilizationRatePerBlock_affectsPastBlocks() (gas: 2382920)
[PASS] test_utilizeThenUtilizeWithZeroAmount() (gas: 2609266)
[PASS] test_utilize_after_liquidation() (gas: 3059778)
[PASS] test_withdrawProtocolFee() (gas: 2670222)
[PASS] test_withdrawProtocolFee_roundDown() (gas: 2593288)
Test result: ok. 28 passed; 0 failed; 0 skipped; finished in 2.53s

Running 3 tests for test/SDIncentiveController.t.sol:SDIncentiveControllerTests
[PASS] test_multipleRewardPeriods() (gas: 903413)
[PASS] test_rewardPerToken_precisionLoss(uint256,uint256) (runs: 100, u: 24579679, ~: 24579679)
[PASS] test_updateReward_losePendingRewards() (gas: 1096168)
Test result: ok. 3 passed; 0 failed; 0 skipped; finished in 9.89s

Page | 29

Stader SD Utility Pool Test Suite

Running 6 tests for test/SDCollateral.t.sol:SDCollateralTests
[PASS] test_depositSDAsCollateralOnBehalf(address,uint256) (runs: 10000, u: 235909, ~: 237912)
[PASS] test_depositSDFromUtilityPool(address,uint256) (runs: 10000, u: 224035, ~: 225340)
[PASS] test_getOperatorInfo(address) (runs: 10000, u: 594762, ~: 594763)
[PASS] test_reduceUtilizedSDPosition(address,uint256) (runs: 10000, u: 262908, ~: 262906)
[PASS] test_withdraw(uint256,uint256) (runs: 10000, u: 1261811, ~: 1265154)
[PASS] test_withdrawOnBehalf(uint256,uint256,address) (runs: 10000, u: 1264807, ~: 1267854)
Test result: ok. 6 passed; 0 failed; 0 skipped; finished in 13.04s

Running 4 tests for test/OperatorRewardsCollector.t.sol:OperatorRewardsCollectorTests
[PASS] test_claim(uint256) (runs: 10000, u: 1307357, ~: 1307357)
[PASS] test_claimFor(uint256) (runs: 10000, u: 1306848, ~: 1306848)
[PASS] test_updateWethAddress() (gas: 31571)
[PASS] test_withdrawableInEth_rounding() (gas: 1995917)
Test result: ok. 4 passed; 0 failed; 0 skipped; finished in 16.05s

Page | 30

Stader SD Utility Pool Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

Page | 31

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Precision Issue In Health Factor Calculation
	Operator Can Continue To Utilize The Protocol After Being Liquidated
	Persistent Debt Post Liquidation
	Malicious Reward Address Blocking Liquidation
	WETH Stuck In OperatorRewardsCollector During Liquidation Process
	Fee Accounting Rounding Favours Users Over Protocol
	Price Inflation Of cTokenShare When Supply Is Zero
	Non-Reentrant Modifier Conflict
	Lost SD Rewards
	Rounding Error Causing Loss Of Funds
	claim() Function Always Reverts If Liquidation Occurred
	Modifications To Rewards And Fees Can Apply Retroactively
	Missing Price Staleness Checks For SD/ETH Oracle
	Lack Of Slippage Parameter During Withdrawals
	Precision Loss In Reward Calculation
	Potentially Excessive SD/ETH TWAP Time Window
	Small Precision Loss In requestWithdraw()
	Operator Can Grief Liquidations
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

